If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2=300
We move all terms to the left:
5x^2-(300)=0
a = 5; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·5·(-300)
Δ = 6000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6000}=\sqrt{400*15}=\sqrt{400}*\sqrt{15}=20\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{15}}{2*5}=\frac{0-20\sqrt{15}}{10} =-\frac{20\sqrt{15}}{10} =-2\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{15}}{2*5}=\frac{0+20\sqrt{15}}{10} =\frac{20\sqrt{15}}{10} =2\sqrt{15} $
| 30=-5/9x | | 8(x-1)=6(x+3) | | (x+4)(3x-6)+4=4 | | -2/3=4/m+4 | | -2(5+6c)+16=-19 | | F(67)=7x+4 | | 2/3(6x+9)=22 | | F(x)=7(-8)+4 | | x+x+(x-2/3)=144 | | 7x+10=8x-10 | | m+3m+5m=72 | | 4(b-2)-10=2(b+2) | | -8a+6a=-6 | | x-7=14+2x | | 3/7t+1=-11 | | 0.4x-0.2=8.4 | | 0=9x^2+67+120 | | x+2=6x+4 | | 2z/7+8=7 | | 4z/7+8=-3 | | 29.99+.10x=99.95 | | 2n+1÷2=3 | | -15=5+5x | | 1/3(x+18)=9 | | n^2-16-17=0 | | 9x-11=8x+23 | | 5(3x-2)+4(6-x)=-4x+47 | | 4x+4.8=3x+7 | | z/10+2=6 | | .4n-7=12 | | 7x-3=12x-8 | | x+x^2+-7x+10=-2 |